

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

	CANDIDATE NAME		
	CENTRE NUMBER		CANDIDATE NUMBER
*			4004/11
	MATHEMATIC	S (SYLLABUS D)	4024/11
	Paper 1		October/November 2013
			2 hours
	Candidates and	swer on the Question Paper.	
л л л л л л л л л л л л л л л л л л л	Additional Mate	erials: Geometrical instruments	

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.Write in dark blue or black pen.You may use a pencil for any diagrams or graphs.Do not use staples, paper clips, highlighters, glue or correction fluid.DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

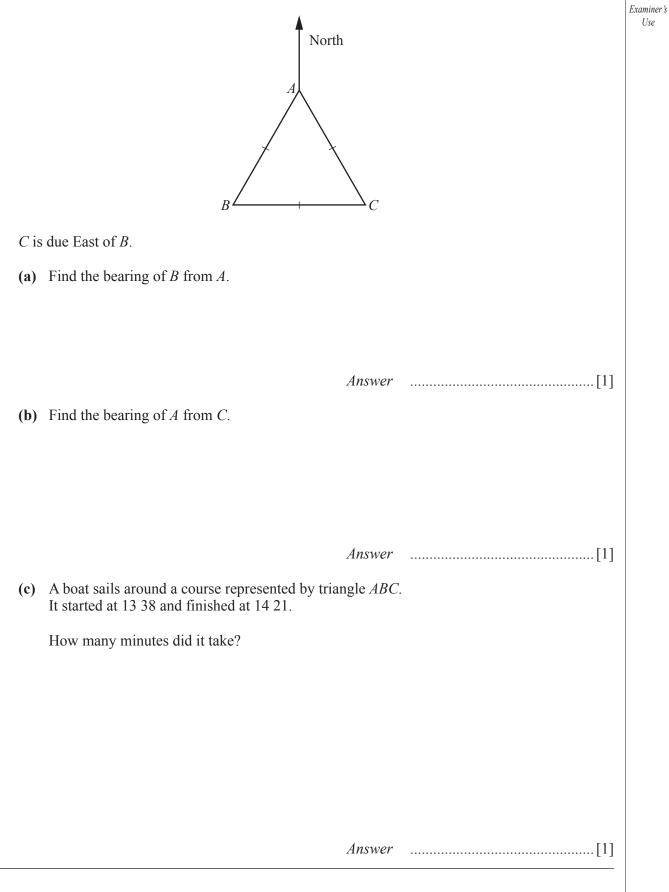
If working is needed for any question it must be shown in the space below that question. Omission of essential working will result in loss of marks.

ELECTRONIC CALCULATORS MUST NOT BE USED IN THIS PAPER.

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 80.

This document consists of **20** printed pages.

	ELECTRONIC CALCULATORS MUST NOT BE USED IN THIS PAPER.											
1	(a)		niner's Jse									
	(b)	Answer										
		Answer[1]										
2	(a)	Evaluate 0.02×1.2 .										
		Answer[1]										
	(b)	Arrange these values in order of size, starting with the smallest.										
		$22\% \frac{2}{9} 0.2$										
		Answer										


3	(a)	Express the ratio 30 minutes to $2\frac{1}{4}$ hours in its lowest terms. Give your answer in the form $m : n$, where m and n are integers.	For Examiner's Use
		Answer	
	(b)	Find the simple interest on \$200 for 4 years at 0.6% per year.	
		Answer \$[1]	
4	Fine	d two solutions of the inequality $3x + 4 < 11$ that lie between 2 and 3.	
		<i>Answer</i> $x =$ and	

5	The length of a side of a square is given as $d \text{ cm}$, correct to the nearest 10 cm.												
	Find an expression in terms of <i>d</i> for												
	(a) the upper bound of the perimeter of the square,												
	(b)	Answer											
		<i>Answer</i> cm ² [1]											
6	(a)	Evaluate $5 \times 10^{0} + 3 \times 10^{1} + 1 \times 10^{2}$.											
		Answer[1]											
	(b)	Find $(5 \times 10^8) \times (2.4 \times 10^{-3})$. Give your answer in standard form.											
		Answer[1]											
7		making suitable approximations , estimate the value of $\frac{38.982 \times \sqrt{8.8536}}{6.0122}$. w clearly the approximate values you use.											
		Answer[2]											

For

Use

10 In the diagram, the triangle *ABC* is equilateral.

	nade to a scale	of $\frac{1}{40}$.									
(a) The height of the actual car is 1.5 m.											
Find the height, in centimetres , of the model.											
					c	m [1]					
(b) The luggage ca											
Find the luggag	;e capaenty, ill I	111 CS, 01 UIC dC	luai vai.								
			Answer		litro	es [2]					
The lengths of the le The results are show Length (x centimetres)	n in the table.	were measure $3 < x \le 4$		$5 < x \le 7$	$7 < x \le 10$						
The results are show	n in the table.			$5 < x \le 7$ 12	$7 < x \le 10$ 12						
Length (x centimetres)	$1 < x \le 3$	$3 < x \le 4$	$4 < x \leq 5$								
The results are show Length (x centimetres) Frequency Frequency	$1 < x \le 3$	$3 < x \le 4$ 5	$4 < x \le 5$			[2]					
The results are show Length (x centimetres) Frequency Frequency density	The table of table of table to show the table to show the table of table	$3 < x \le 4$ 5	$4 < x \le 5$			[2]					
The results are showLength (x centimetres)FrequencyFrequencyGensity	able to show the sen at random.	$3 < x \le 4$ 5 e frequency de	$4 < x \le 5$ 6 ensities.	12		[2]					
The results are showLength (x centimetres)FrequencyFrequency density(a) Complete the ta (b) One leaf is chose	able to show the sen at random.	$3 < x \le 4$ 5 e frequency de	$4 < x \le 5$ 6 ensities.	12		[2]					
The results are showLength (x centimetres)FrequencyFrequency density(a) Complete the ta (b) One leaf is chose	able to show the sen at random.	$3 < x \le 4$ 5 e frequency de	$4 < x \le 5$ 6 ensities.	12		[2]					
The results are showLength (x centimetres)FrequencyFrequency density(a) Complete the ta (b) One leaf is chose	able to show the sen at random.	$3 < x \le 4$ 5 e frequency de	$4 < x \le 5$ 6 ensities.	12 an 6 cm long.							

13	(a)	Find	f(4).	$f(x) = \frac{7 - 3x}{2x}$		For Examiner's Use
	(b)	Find	$\mathbf{f}^{-1}(x).$	Answer	r	[1]
				Answei	$f = f^{-1}(x) = \dots$	[2]

- (a) Express, in set notation, the subset shaded in the diagram. 14 E В A С *Answer*[1] **(b)** $\mathscr{C} = \{a, b, c, d, e, f, g, h\}$ $P = \{a, b, c\}$ $Q = \{b, c, d, e, f\}$ (i) Find $n(P \cup Q)$. *Answer*[1]
 - List the members of the subset $P' \cap Q$. **(ii)**

https://xtremepape.rs/

For Examiner's Use

For Examiner's Use

15 This figure has rotational symmetry of order 3.

(a)	How many lines of symmetry does the figure have?
	Answer[1]
(b)	Find <i>x</i> .
(~)	
	Answer $x = \dots [1]$
(c)	Find <i>y</i> .
	Answer $y = \dots [1]$

16	(a)	An ordinary die is thrown 15 times. These are the numbers thrown.									For Examiner's Use									
			4	5	3	2	2	5	6	1	6	3	5	2	5	1	3			
		(i)	Find	l the	mode	ð.														
		Answer[1]											[1]							
		(ii)	Find	l the	medi	an.														
												Ansı	ver						[1]	
	(b)					-2	20	-8	x											
			mear	n of t	hese	three	e num	bers	is –5	5.										
		Finc	1 <i>x</i> .																	
												Ansv	ver	x = .					[1]	

17 The diagram shows the points A(1, 4), B(3, 12) and C(15, 4). For The equation of the line through *B* and *C* is 2x + 3y = 42. Examiner's Use y *B*(3, 12) A(1, 4)C(15, 4)0 x The region **inside** triangle *ABC* is defined by three inequalities. One of these is 2x + 3y < 42. (a) Write down the other two inequalities. Answer[2] (b) How many points, with coordinates (10, k), where k is an integer, lie inside the triangle *ABC*? *Answer* [1]

For

70° Examiner's Use Find *x*. 66° Answer $x = \dots [3]$ [Volume of a cone = $\frac{1}{3}\pi r^2 h$] 19 Cone 1 has radius 2x cm and height 7x cm. Cone 2 has radius *x* cm and height 4*x* cm. Find an expression, in terms of π and x, for the **difference** in the volume of the two cones. Give your answer in its simplest form.

18

The diagram shows a hexagon.

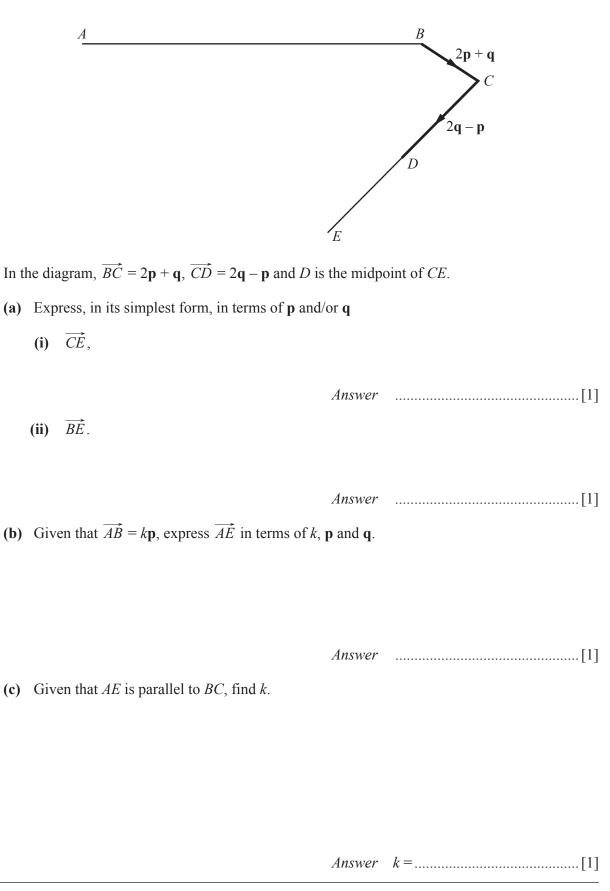
20

Two bags contain beads.

The first bag contains 2 white, 2 red and 3 black beads.

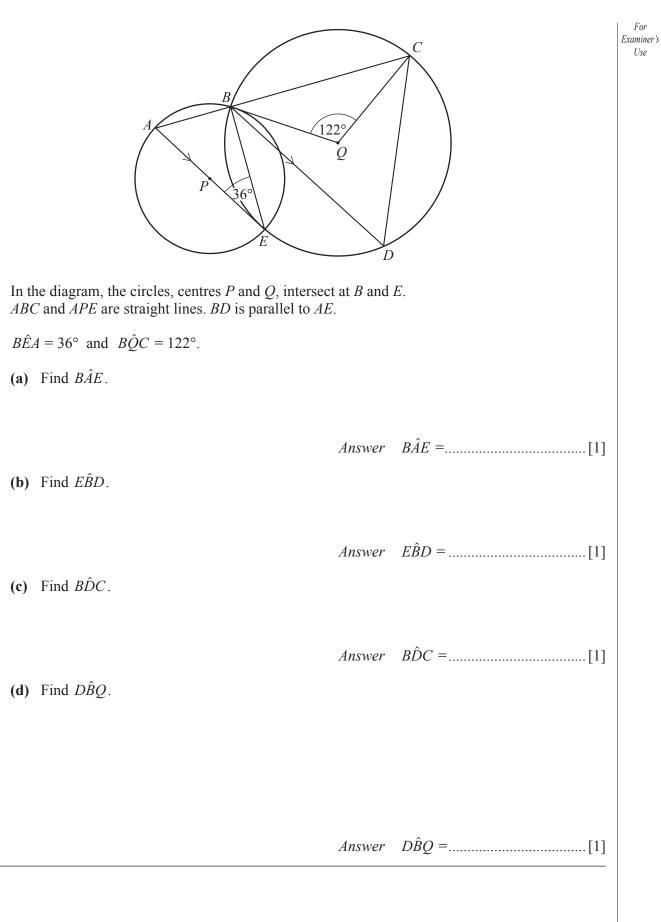
First bead

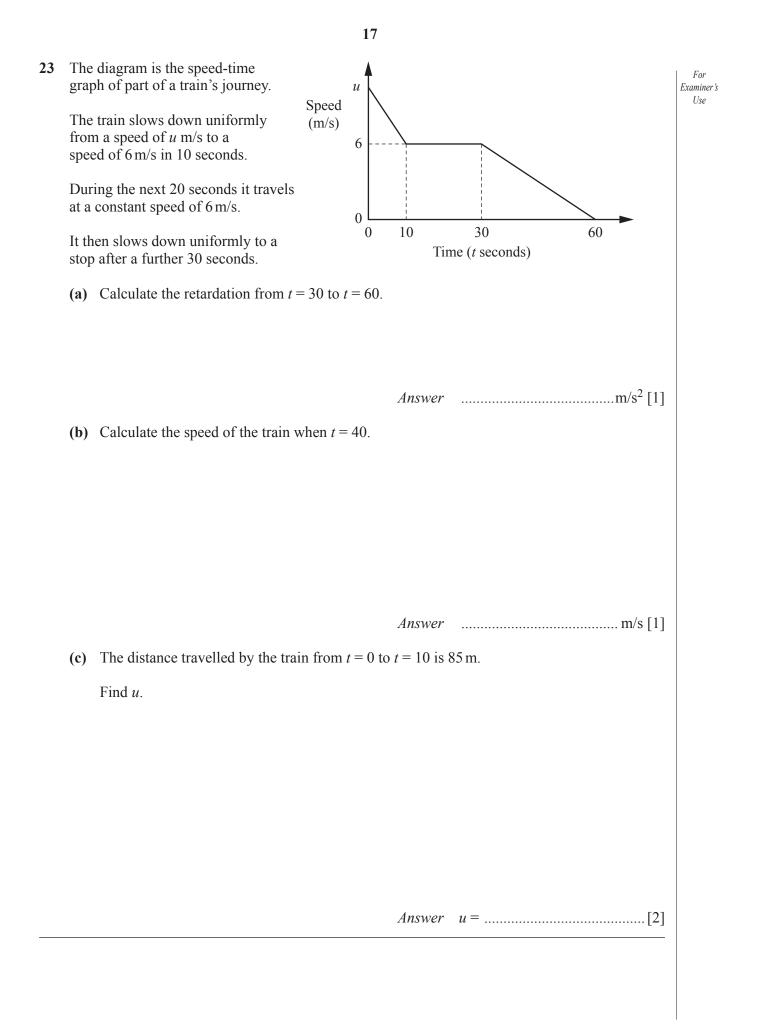
The second bag contains 3 white and 2 black beads.


One bead is taken, at random, from each bag.

The tree diagram is shown below.

Second bead


For Examiner's Use


.....[1]

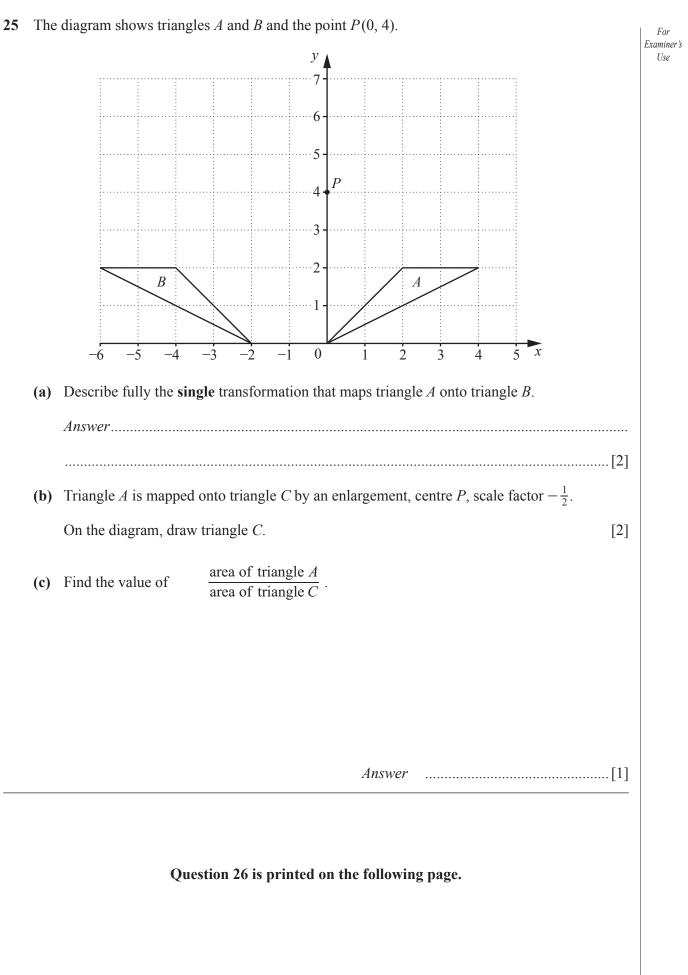
For Examiner's

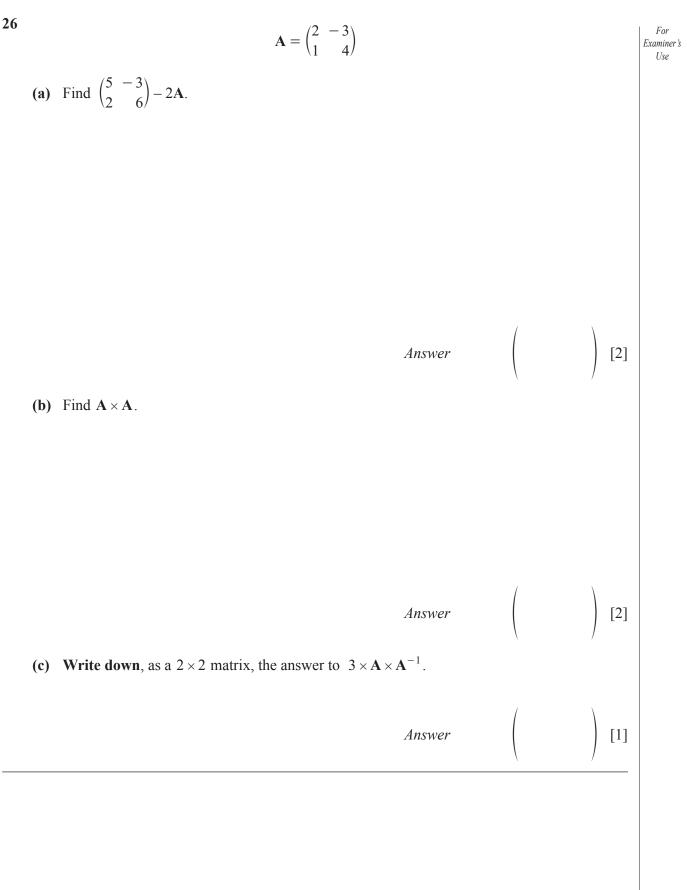
Use

24 The **first** and **second** terms of a sequence are 15 and 11 respectively.

The *n*th term of the sequence is $10 + An + \frac{B}{n}$.

(a) Show that A + B = 5 and 4A + B = 2.


(b) Solve the simultaneous equations.


$$A + B = 5$$
$$4A + B = 2$$

Answer
$$A = \dots$$
 [2]
(c) Hence find the third term of the sequence.
Answer \dots [1]

https://xtremepape.rs/

[2]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.